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INTRODUCTION

Switching zone control (SZC) is a nonlinear feedback controller with the

following characteristics (refs 1-5): (1) decentralized control; (2) near mini-

mum time which approaches the bang-bang minimum time controller in the limit;

(3) designer-specified peak torques for a given motor which solve the saturation

problem; (4) designer-specified maximum velocity, for example, when the motors

have limited horsepower; and (5) easy programming using digital microprocessors.

The basis of SZC is the time optimal bang-bang theory where maximum effort is

applied by motors in both negative and positive directions (accelerating and

decelerating phases) to move a mechanism from one state to another in minimum

time (refs 1-3). Instead of a switching boundary as used in the bang-bang

approach, a switching zone is used whereby the torque varies linearly. Outside

this zone, the torque takes on the maximum allowable values as in bang-bang.

Finally, since peak torques are prespecified, SZC eliminates the usual problems

of overshoot and relative instability inherent in high gain linear feedback

systems where saturation of motors and/or amplifiers becomes a problem.

To date, verification of theoretical results for SZC has been primarily by

simulations. This report presents experimental results of applying SZC to two

degrees of freedom of a three-degree of freedom pantograph robot. Results

obtained confirm the minimum time aspects of a multidegree of freedom SZC

without instability or overshoot. Coupling terms were effectively handled as

disturbing torques. Robustness was also verified by artificially introducing

errors in the form of time delays and/or parameter inaccuracies with resulting

minimal effect on desired trajectories and times of operation.

References are listed at the end of this report.
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In the derivation of SZC, it was assumed that the disturbing torque was

zero in the steady-state limit. This is generally not the case where gravity,

friction, and other effects could be nonzero and unknown. The method used most

successfully to handle this problem was to compute the real-time feedforward

term that automatically cancels any steady-state torques present. This was done

by computing the work performed in real time and comparing it to momentum

changes.

Finally, SZC was extended to a mechanical system with elastic joints (ref

5). The elastic joint is the simplest idealization of the flexible/compliant

robotic mechanism. Reference 5 contains details of the control of a motor

operating through a flexible coupling and solutions to both the stability and

controller design problems for the elastic joint case.

SWITCHING ZONE CONTROL

Xia and Chang (ref 1) presented in detail some of the modifications to the

bang-bang control theory necessary for SZC. They proposed controlling each link

or degree of freedom of a robotic system in a decentralized fashion. Instead of

a switching boundary as used in the bang-bang approach, a switching zone is used

whereby the torque varies linearly. Outside this zone, the torque takes on the

maximum allowable values as in bang-bang. In addition, the decelerating phase

starts at a lower value of speed so that only a fraction of the available torque

is needed to guide the system along its decelerating trajectory without

overshoot.

Equation (1) shows a simple second order system where all of the inter-

linking coupling terms of a multilink system, as well as gravity and friction

effects, are considered as a single disturbing force, udi:

Ji9 = ud(,,) + u (1)
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where

Ji = inertia of the ith link

Oi = angular position of the ith link

ui = motor torque at the ith link

Udi = disturbing torque which includes Coriolis, centrifugal, gravity, and

friction coupling effects

(9,9,9) = vectors of position, velocity, and acceleration for a multilink

system

A schematic diagram of the nonlinear switching zone controller for a typi-

cal link is shown in Figure I where the subscript i has been dropped. The

"plant" in Figure 1 can be the simple second order system given as Eq. (1) or a

more complicated plant including, for example, elastic joints (ref 5). The

variables Or and ir in the figure are the desired reference angle and velocity;

e and e are the error functions; and the nonlinear blocks N1 , N2 , N3 , and N4

are defined as follows (t = input variable, r =output variable):

r = kl for I um/k1

NJ: n = Um for > um/kI

= -Um  for { < -um/k I  (2)

Jm_

N2: m (3)

r =k2 t for f b/k2

N3 : n = b for t > b/k2

q= -b for t < -b/k2  (4)

?=0 for 4 vm

N4 : n = V(-Vm) for { > vm

" = V(t+Vm) for { < -vm (5)
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cioure 1. B1- ck diag-?m of switching zone control system.

The constants kj, k2 , a, b, um , vm , V, and Jm are the controller gains and

parameters that need to be specified by the designer. These constants for the

second order plant of Eq. (1) are defined as follows:

m = inertia where 'i' denotes the maximum value of J = J(e)

Um  = maximum torque generated by the motor

a = nonlinear function term selected to guarantee sufficient torque at

deceleration,

= (um - Udm)/Um where Udm is the maximum value of ud (6)

b = constant selected to guarantee no overshoot,

= max(um/kI or k2 aum~i/(kl(Xik 2 - I))) (7)
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where

k1k2 + i(k1k2 )2 - 4k1 J
X 2J (8)

vm  = maximum allowable velocity

V = constant chosen to smoothly maintain maximum velocity near vm

kl,k 2 = proportional and velocity gains where

k2 ) 2YJ/k i is required for no overshoot

The maximum torque um can be specified arbitrarily or can be fixed based on the

motor/amplifier specifications. The gain k, is fixed high and is limited pri-

marily by the requirement for no system chatter/jitters, which are common

effects in pure bang-bang control. Infinite gain k1 reduces the control to

switching boundary or bang-bang.

A better understanding of the characteristics of SZC can be obtained by

examining the resulting phase diagram for the second order system. Figure 2 is

a plot of 6 versus 6 where ud in Eq. (1) is assumed to be zero. The system with

nonzero ud is considered later in this report. The controller in this case is

designed to drive any given nonzero state toward the origin. For example, if

the initial state in Figure 2 starts at point A, maximum torque ti = um is

applied at first. The path then eventually enters the zone between full nega-

tive and positive torques. Once in the zone, the state is captured and is

driven to the origin with little or no overshoot (see Reference 1 for details).

Xia and Chang (ref 1) and Jeng (ref 2), as well as these investigators (ref 5)

have found this approach to be very effective, even in the presence of minor

time delays and parameter inaccuracies.
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Figure 2. Phase diagram for switching zone control system
using typical trajectory.

CONTROL OF A PANTOGRAPH ROBOT

The SZC method was applied to a laboratory pantograph robot as shown in

igure 3. This robot has three primary degrees of freedom. One degree of

freedom is in the waist which allows limited motion of the robot about a ver-

tical axis. The other two degrees of freedom allow motion in a two-dimensional

vertical plane. The linkage for these two degrees of freedom has characteris-

tics of a pantograph drafting instrument where motion is actuated through two

separate sides of a parallel framework 3s shown in Figure 3.

A switching zone controller was implemented for the pantograph robot using

developed software on a Zenith personal computer and Data Translation A/D and

0/A computer boards. Feedback was achieved using encoders where velocIty was

calculated using consecutive positional information. Sampling times used were

of the order of 10 milliseconds.
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Figure 3. Pantograph robot showing vertical plane

x-y motors and linkages.

Numerous trials were conducted to test SZC. The nominal values of SZC

parameters for the two degrees of freedom (x and y coordinates) used for these

trials are g-Iven as follows:

mx= 100.0 in. -lbs/rad/sec2

Jy=50.0 in.-lbs/rad/sec2

umx = umy = 600.0 in.1lbs

Vmax = 100 to 150 degrees/sec

a = 0.8 to 1.0

b = 0.09

kx= kly = 7000.0 in. -ibs/rad

kx= 0.12 in.-lbs/rad/sec

x-y= 0.09 in.-lbs/rad/sec

7
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The velocity gains k2x and k2y as given above are about half the values

that were calculated using Eq. (8). This prevented chattering of the mechanism

resulting from the relatively long sampling interval of 10 milliseconds along

with inaccurate velocity calculations that were used.

Small additional time delays of the order of 10 milliseconds along with

variations of the order of 10 to 20 percent in the nominal parameters given

above were also made to test the robustness of SZC. Highly satisfactory results

were obtained in all instances and all runs were stable with little or no

overshoot. An example of the results is shown in Figure 4 for (x,y) motions for

SZC parameters. Stable motion is observed with no overshoot, although the

torque plots show considerable variations.

110- 600
Mol

LA 90- .2 .6 t, secrI 0
= - .4

" 70
i=

50-: -600

.2 .4 .6 t, sec

.2 .4 .6
160-

, sec 600-

140

A.4 .6 t, sec
.*0

120

100 -60(

Figure 4. Link angles x and y (deqrees) and corresponding
motor torques Ux and Uy (in.-lbs).
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SYSTEM WITH ELASTIC JOINT

The ramifications of including an elastic joint between the motor and the

payload on the design of a switching zone controller were considered in

Reference 5. This is perhaps the simplest case of the compliant/flexible manip-

ulator. There is considerable interest at the present time in controlling

lightweight, flexible mechanical systems, particularly in nonindustrial applica-

tions such as space or military where weight and speed of operation are critical

factors. The totally elastic or flexible arm is an infinite degree of freedom

system which, in the simplest idealization, reduces to a fourth order spring-

mass system.

In general, the closed-loop linear feedback for this case using only end-

point information is unstable. In order to assure stability, co-located motor

velocity feedback is required in addition to endpoint (payload) posit;Von and

velocity feedback. This case is briefly mentioned here to indicate the ver-

satility of the approach in practical situations. Further details can be four.

in Reference 5.

NONZERO STEADY-STATE DISTURBING TORQUE

In the derivation of SZC it was assumed that the disturbing torque ud was

zero in the limit. This is generally not the case where gravity, friction, and

other effects result in nonzero steady-state disturbances. Consequently,

steady-state motor torques are required to overcome these disturbances in order

to maintain a desired payload or mechanism position or state. However, the

disturbing torque cannot be predicted beforehand since friction effects vary

from cycle to cycle and unknown gravity effects may be present. The nonpi.dict-
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ability of the gravity effects is especially true when the payload varies in a

random fashion or when a mechanism is placed on a moving vehicle where orien-

tation varies.

The most successful and easiest approach used in these studies was to com-

pute the real-time feedforward term that automatically cancels any steady-state

disturbing torques present. An efficient way of accomplishing this is to com-

pute both the work performed by the motor and the momentum change over a short

period of time. Integrating Eq. (1) over a small time interval (to,t) gives

t
J(O(t) - 9(to)) = fto u(t)dt + ud * (t-tO ) (9)

in which ud is an approximate average value of the disturbing torque over the

time interval At = (t-to). Solving for ud yields

/t
Ud = (J(6(t) - 0(to)) - to u(t)dt)/At (10)

The quantities on the right-hand side of Eq. (10) are known or can be computed

in real time and consequently ud can be calculated in real time. A feedforward

term can then be added directly to the input for the motor, effectively counter-

balancing steady-state disturbances in real time.

SUMMARY AND CONCLUSIONS

Basically, a control procedure was presented for independently applying SZC

to each link of a multidegree of freedom system. Experimental results described

herein have demonstrated the decentralized nature of SZC along with other

desirable attributes such as near minimum time, stability, and no overshoot.

Real-time identification of gravity, friction, and other effectb was also con-

sidered for adaptively compensating for nonzero steady-state disturbing torques.
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Switching zone control, as outlined in this report, has been applied to

Army subsystems being developed at Benet Laboratories. It is proving to be a

very effective means of controlling mechanisms where the exact path following is

not required and minimum time is the more desirable objective.
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